3.1.100 \(\int \frac {\sin ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\) [100]

3.1.100.1 Optimal result
3.1.100.2 Mathematica [A] (verified)
3.1.100.3 Rubi [A] (verified)
3.1.100.4 Maple [B] (verified)
3.1.100.5 Fricas [A] (verification not implemented)
3.1.100.6 Sympy [F]
3.1.100.7 Maxima [F]
3.1.100.8 Giac [F]
3.1.100.9 Mupad [F(-1)]

3.1.100.1 Optimal result

Integrand size = 25, antiderivative size = 135 \[ \int \frac {\sin ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {3 (a+b)^2 \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 a^{5/2} f}-\frac {(5 a+3 b) \cos (e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 a^2 f}+\frac {\cos ^3(e+f x) \sin (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{4 a f} \]

output
3/8*(a+b)^2*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/a^(5/2)/ 
f-1/8*(5*a+3*b)*cos(f*x+e)*sin(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/a^2/f+1/4 
*cos(f*x+e)^3*sin(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/a/f
 
3.1.100.2 Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.07 \[ \int \frac {\sin ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\frac {\sqrt {a+2 b+a \cos (2 (e+f x))} \sec (e+f x) \left (3 (a+b)^2 \arctan \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b-a \sin ^2(e+f x)}}\right )-\sqrt {a} \sin (e+f x) \sqrt {a+b-a \sin ^2(e+f x)} \left (3 (a+b)+2 a \sin ^2(e+f x)\right )\right )}{8 \sqrt {2} a^{5/2} f \sqrt {a+b \sec ^2(e+f x)}} \]

input
Integrate[Sin[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
(Sqrt[a + 2*b + a*Cos[2*(e + f*x)]]*Sec[e + f*x]*(3*(a + b)^2*ArcTan[(Sqrt 
[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]] - Sqrt[a]*Sin[e + f*x]*S 
qrt[a + b - a*Sin[e + f*x]^2]*(3*(a + b) + 2*a*Sin[e + f*x]^2)))/(8*Sqrt[2 
]*a^(5/2)*f*Sqrt[a + b*Sec[e + f*x]^2])
 
3.1.100.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.10, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4620, 372, 402, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sin ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (e+f x)^4}{\sqrt {a+b \sec (e+f x)^2}}dx\)

\(\Big \downarrow \) 4620

\(\displaystyle \frac {\int \frac {\tan ^4(e+f x)}{\left (\tan ^2(e+f x)+1\right )^3 \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 372

\(\displaystyle \frac {\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}-\frac {\int \frac {-2 (2 a+b) \tan ^2(e+f x)+a+b}{\left (\tan ^2(e+f x)+1\right )^2 \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{4 a}}{f}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}-\frac {\frac {(5 a+3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}-\frac {\int \frac {3 (a+b)^2}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 a}}{4 a}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}-\frac {\frac {(5 a+3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}-\frac {3 (a+b)^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 a}}{4 a}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}-\frac {\frac {(5 a+3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}-\frac {3 (a+b)^2 \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{2 a}}{4 a}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{4 a \left (\tan ^2(e+f x)+1\right )^2}-\frac {\frac {(5 a+3 b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 a \left (\tan ^2(e+f x)+1\right )}-\frac {3 (a+b)^2 \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 a^{3/2}}}{4 a}}{f}\)

input
Int[Sin[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
((Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(4*a*(1 + Tan[e + f*x]^2)^2 
) - ((-3*(a + b)^2*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f* 
x]^2]])/(2*a^(3/2)) + ((5*a + 3*b)*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x 
]^2])/(2*a*(1 + Tan[e + f*x]^2)))/(4*a))/f
 

3.1.100.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 372
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-a)*e^3*(e*x)^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2 
)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(p + 1 
))   Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + 
 (a*d*(m + 2*q - 1) + 2*b*c*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, 
e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntBinomialQ[a 
, b, c, d, e, m, 2, p, q, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4620
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m 
+ 1)/f   Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(1 + f 
f^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, 
 x] && IntegerQ[m/2] && IntegerQ[n/2]
 
3.1.100.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(808\) vs. \(2(119)=238\).

Time = 5.56 (sec) , antiderivative size = 809, normalized size of antiderivative = 5.99

method result size
default \(\frac {2 \sin \left (f x +e \right ) \cos \left (f x +e \right )^{3} \sqrt {-a}\, a^{2}-5 \sin \left (f x +e \right ) \cos \left (f x +e \right ) \sqrt {-a}\, a^{2}-\cos \left (f x +e \right ) \sqrt {-a}\, \sin \left (f x +e \right ) a b +3 \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a^{2}+6 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b +3 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2}-5 \sqrt {-a}\, a b \tan \left (f x +e \right )-3 \sqrt {-a}\, b^{2} \tan \left (f x +e \right )+3 \sec \left (f x +e \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a^{2}+6 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a b \sec \left (f x +e \right )+3 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2} \sec \left (f x +e \right )}{8 f \,a^{2} \sqrt {-a}\, \sqrt {a +b \sec \left (f x +e \right )^{2}}}\) \(809\)

input
int(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/8/f/a^2/(-a)^(1/2)/(a+b*sec(f*x+e)^2)^(1/2)*(2*sin(f*x+e)*cos(f*x+e)^3*( 
-a)^(1/2)*a^2-5*sin(f*x+e)*cos(f*x+e)*(-a)^(1/2)*a^2-cos(f*x+e)*(-a)^(1/2) 
*sin(f*x+e)*a*b+3*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1 
/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^2+6*ln(4*(-a)^ 
(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)* 
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+ 
e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b+3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f 
*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2 
)*b^2-5*(-a)^(1/2)*a*b*tan(f*x+e)-3*(-a)^(1/2)*b^2*tan(f*x+e)+3*sec(f*x+e) 
*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*ln(4*(-a)^(1/2)*((b+a*cos(f*x 
+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2) 
/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a^2+6*ln(4*(-a)^(1/2)*((b+a*cos(f 
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^ 
2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+ 
e))^2)^(1/2)*a*b*sec(f*x+e)+3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f 
*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e)) 
^2)^(1/2)-4*sin(f*x+e)*a)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2* 
sec(f*x+e))
 
3.1.100.5 Fricas [A] (verification not implemented)

Time = 0.56 (sec) , antiderivative size = 565, normalized size of antiderivative = 4.19 \[ \int \frac {\sin ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\left [-\frac {3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) - 8 \, {\left (2 \, a^{2} \cos \left (f x + e\right )^{3} - {\left (5 \, a^{2} + 3 \, a b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{64 \, a^{3} f}, -\frac {3 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) - 4 \, {\left (2 \, a^{2} \cos \left (f x + e\right )^{3} - {\left (5 \, a^{2} + 3 \, a b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )}{32 \, a^{3} f}\right ] \]

input
integrate(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[-1/64*(3*(a^2 + 2*a*b + b^2)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a 
^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e 
)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7 
*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^ 
2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 
 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 
+ b)/cos(f*x + e)^2)*sin(f*x + e)) - 8*(2*a^2*cos(f*x + e)^3 - (5*a^2 + 3* 
a*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e 
))/(a^3*f), -1/32*(3*(a^2 + 2*a*b + b^2)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x 
 + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e)) 
*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^ 
4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 4*(2* 
a^2*cos(f*x + e)^3 - (5*a^2 + 3*a*b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 
+ b)/cos(f*x + e)^2)*sin(f*x + e))/(a^3*f)]
 
3.1.100.6 Sympy [F]

\[ \int \frac {\sin ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {\sin ^{4}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \]

input
integrate(sin(f*x+e)**4/(a+b*sec(f*x+e)**2)**(1/2),x)
 
output
Integral(sin(e + f*x)**4/sqrt(a + b*sec(e + f*x)**2), x)
 
3.1.100.7 Maxima [F]

\[ \int \frac {\sin ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\sin \left (f x + e\right )^{4}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sin(f*x + e)^4/sqrt(b*sec(f*x + e)^2 + a), x)
 
3.1.100.8 Giac [F]

\[ \int \frac {\sin ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int { \frac {\sin \left (f x + e\right )^{4}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}} \,d x } \]

input
integrate(sin(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
sage0*x
 
3.1.100.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sin ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^4}{\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \]

input
int(sin(e + f*x)^4/(a + b/cos(e + f*x)^2)^(1/2),x)
 
output
int(sin(e + f*x)^4/(a + b/cos(e + f*x)^2)^(1/2), x)